Deploy LightGBM model with InferenceService¶
Train a LightGBM model¶
To test the LightGBM Server, first you need to train a simple LightGBM model with following python code.
import lightgbm as lgb
from sklearn.datasets import load_iris
import os
model_dir = "."
BST_FILE = "model.bst"
iris = load_iris()
y = iris['target']
X = iris['data']
dtrain = lgb.Dataset(X, label=y, feature_names=iris['feature_names'])
params = {
'objective':'multiclass',
'metric':'softmax',
'num_class': 3
}
lgb_model = lgb.train(params=params, train_set=dtrain)
model_file = os.path.join(model_dir, BST_FILE)
lgb_model.save_model(model_file)
Deploy LightGBM model with V1 protocol¶
Test the model locally¶
Install and run the LightGBM Server using the trained model locally and test the prediction.
python -m lgbserver --model_dir /path/to/model_dir --model_name lgb
After the LightGBM Server
is up locally we can then test the model by sending an inference request.
import requests
request = {'sepal_width_(cm)': {0: 3.5}, 'petal_length_(cm)': {0: 1.4}, 'petal_width_(cm)': {0: 0.2},'sepal_length_(cm)': {0: 5.1} }
formData = {
'inputs': [request]
}
res = requests.post('http://localhost:8080/v1/models/lgb:predict', json=formData)
print(res)
print(res.text)
Deploy with InferenceService¶
To deploy the model on Kubernetes you can create the InferenceService by specifying the modelFormat
with lightgbm
and storageUri
.
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "lightgbm-iris"
spec:
predictor:
model:
modelFormat:
name: lightgbm
storageUri: "gs://kfserving-examples/models/lightgbm/iris"
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "lightgbm-iris"
spec:
predictor:
lightgbm:
storageUri: "gs://kfserving-examples/models/lightgbm/iris"
Apply the above yaml to create the InferenceService
kubectl apply -f lightgbm.yaml
Expected Output
$ inferenceservice.serving.kserve.io/lightgbm-iris created
Test the deployed model¶
To test the deployed model the first step is to determine the ingress IP and ports and set INGRESS_HOST
and INGRESS_PORT
, then run the following curl command to send the inference request to the InferenceService
.
MODEL_NAME=lightgbm-iris
INPUT_PATH=@./iris-input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice lightgbm-iris -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH
Expected Output
* Trying 169.63.251.68...
* TCP_NODELAY set
* Connected to 169.63.251.68 (169.63.251.68) port 80 (#0)
> POST /models/lightgbm-iris:predict HTTP/1.1
> Host: lightgbm-iris.default.svc.cluster.local
> User-Agent: curl/7.60.0
> Accept: */*
> Content-Length: 76
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 76 out of 76 bytes
< HTTP/1.1 200 OK
< content-length: 27
< content-type: application/json; charset=UTF-8
< date: Tue, 21 May 2019 22:40:09 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 13032
<
* Connection #0 to host 169.63.251.68 left intact
{"predictions": [[0.9, 0.05, 0.05]]}
Deploy the model with Open Inference Protocol¶
Test the model locally¶
Once you've got your model serialized model.bst
, we can then use KServe LightGBM Server to create a local model server.
Note
This step is optional and just meant for testing, feel free to jump straight to deploying with InferenceService.
Pre-requisites¶
Firstly, to use kserve lightgbm server locally, you will first need to install the lgbserver
runtime package in your local environment.
- Clone the KServe repository and navigate into the directory.
git clone https://github.com/kserve/kserve
- Install
lgbserver
runtime. KServe uses Poetry as the dependency management tool. Make sure you have already installed poetry.cd python/lgbserver poetry install
Serving model locally¶
The lgbserver
package takes three arguments.
--model_dir
: The model directory path where the model is stored.--model_name
: The name of the model deployed in the model server, the default value ismodel
. This is optional.--nthread
: Number of threads to use by LightGBM. This is optional and the default value is 1.
With the lgbserver
runtime package installed locally, you should now be ready to start our server as:
python3 lgbserver --model_dir /path/to/model_dir --model_name lightgbm-v2-iris
Deploy InferenceService with REST endpoint¶
To deploy the LightGBM model with Open Inference Protocol, you need to set the protocolVersion
field to v2
.
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "lightgbm-v2-iris"
spec:
predictor:
model:
modelFormat:
name: lightgbm
runtime: kserve-lgbserver
protocolVersion: v2
storageUri: "gs://kfserving-examples/models/lightgbm/v2/iris"
Note
For V2 protocol (open inference protocol)
if runtime
field is not provided then, by default mlserver
runtime is used.
Apply the InferenceService yaml to get the REST endpoint
kubectl apply -f lightgbm-v2.yaml
Expected Output
$ inferenceservice.serving.kserve.io/lightgbm-v2-iris created
Test the deployed model with curl¶
You can now test your deployed model by sending a sample request.
Note that this request needs to follow the V2 Dataplane protocol.
You can see an example payload below. Create a file named iris-input-v2.json
with the sample input.
{
"inputs": [
{
"name": "input-0",
"shape": [2, 4],
"datatype": "FP32",
"data": [
[6.8, 2.8, 4.8, 1.4],
[6.0, 3.4, 4.5, 1.6]
]
}
]
}
Now, assuming that your ingress can be accessed at
${INGRESS_HOST}:${INGRESS_PORT}
or you can follow this instruction
to find out your ingress IP and port.
You can use curl
to send the inference request as:
SERVICE_HOSTNAME=$(kubectl get inferenceservice lightgbm-v2-iris -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v \
-H "Host: ${SERVICE_HOSTNAME}" \
-H "Content-Type: application/json" \
-d @./iris-input-v2.json \
http://${INGRESS_HOST}:${INGRESS_PORT}/v2/models/lightgbm-v2-iris/infer
Expected Output
{
"model_name":"lightgbm-v2-iris",
"model_version":null,
"id":"96253e27-83cf-4262-b279-1bd4b18d7922",
"parameters":null,
"outputs":[
{
"name":"predict",
"shape":[2,3],
"datatype":"FP64",
"parameters":null,
"data":
[8.796664107010673e-06,0.9992300031041593,0.0007612002317336916,4.974786820804187e-06,0.9999919650711493,3.0601420299625077e-06]
}
]
}
Create the InferenceService with gRPC endpoint¶
Create the inference service yaml and expose the gRPC port, currently only one port is allowed to expose either HTTP or gRPC port and by default HTTP port is exposed.
Note
Currently, KServe only supports exposing either HTTP or gRPC port. By default, HTTP port is exposed.
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "lightgbm-v2-iris-grpc"
spec:
predictor:
model:
modelFormat:
name: lightgbm
protocolVersion: v2
runtime: kserve-lgbserver
storageUri: "gs://kfserving-examples/models/lightgbm/v2/iris"
ports:
- name: h2c # knative expects grpc port name to be 'h2c'
protocol: TCP
containerPort: 8081
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "lightgbm-v2-iris-grpc"
spec:
predictor:
model:
modelFormat:
name: lightgbm
protocolVersion: v2
runtime: kserve-lgbserver
storageUri: "gs://kfserving-examples/models/lightgbm/v2/iris"
ports:
- name: grpc-port # Istio requires the port name to be in the format <protocol>[-<suffix>]
protocol: TCP
containerPort: 8081
Note
For V2 protocol (open inference protocol)
if runtime
field is not provided then, by default mlserver
runtime is used.
Apply the InferenceService yaml to get the gRPC endpoint
kubectl apply -f lightgbm-v2-grpc.yaml
Test the deployed model with grpcurl¶
After the gRPC InferenceService
becomes ready, grpcurl, can be used to send gRPC requests to the InferenceService
.
# download the proto file
curl -O https://raw.githubusercontent.com/kserve/open-inference-protocol/main/specification/protocol/open_inference_grpc.proto
INPUT_PATH=iris-input-v2-grpc.json
PROTO_FILE=open_inference_grpc.proto
SERVICE_HOSTNAME=$(kubectl get inferenceservice lightgbm-v2-iris-grpc -o jsonpath='{.status.url}' | cut -d "/" -f 3)
Determine the ingress IP and port and set INGRESS_HOST
and INGRESS_PORT
. Now, you can use curl
to send the inference requests.
The gRPC APIs follow the KServe prediction V2 protocol / Open Inference Protocol.
For example, ServerReady
API can be used to check if the server is ready:
grpcurl \
-plaintext \
-proto ${PROTO_FILE} \
-authority ${SERVICE_HOSTNAME} \
${INGRESS_HOST}:${INGRESS_PORT} \
inference.GRPCInferenceService.ServerReady
Expected Output
{
"ready": true
}
You can test the deployed model by sending a sample request with the below payload.
Notice that the input format differs from the in the previous REST endpoint
example.
Prepare the inference input inside the file named iris-input-v2-grpc.json
.
{
"model_name": "lightgbm-v2-iris-grpc",
"inputs": [
{
"name": "input-0",
"shape": [2, 4],
"datatype": "FP32",
"contents": {
"fp32_contents": [6.8, 2.8, 4.8, 1.4, 6.0, 3.4, 4.5, 1.6]
}
}
]
}
ModelInfer
API takes input following the ModelInferRequest
schema defined in the grpc_predict_v2.proto
file. Notice that the input file differs from that used in the previous curl
example.
grpcurl \
-vv \
-plaintext \
-proto ${PROTO_FILE} \
-authority ${SERVICE_HOSTNAME} \
-d @ \
${INGRESS_HOST}:${INGRESS_PORT} \
inference.GRPCInferenceService.ModelInfer \
<<< $(cat "$INPUT_PATH")
Expected Output
Resolved method descriptor:
// The ModelInfer API performs inference using the specified model. Errors are
// indicated by the google.rpc.Status returned for the request. The OK code
// indicates success and other codes indicate failure.
rpc ModelInfer ( .inference.ModelInferRequest ) returns ( .inference.ModelInferResponse );
Request metadata to send:
(empty)
Response headers received:
accept-encoding: identity,gzip
content-type: application/grpc
date: Sun, 25 Sep 2022 10:25:05 GMT
grpc-accept-encoding: identity,deflate,gzip
server: istio-envoy
x-envoy-upstream-service-time: 99
Estimated response size: 91 bytes
Response contents:
{
"modelName": "lightgbm-v2-iris-grpc",
"outputs": [
{
"name": "predict",
"datatype": "FP64",
"shape": [
"2",
"3"
],
"contents": {
"fp64Contents": [
8.796664107010673e-06,
0.9992300031041593,
0.0007612002317336916,
4.974786820804187e-06,
0.9999919650711493,
3.0601420299625077e-06
]
}
}
]
}